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Modelling fracture in laminated architectural glass
subject to low velocity impact
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Standard finite element wave propagation codes are useful for determining stresses caused
by colliding bodies; however, their applicability to brittle materials is limited because an
accurate treatment of the fracture process is difficult to model. This paper presents a method
that allows traditional wave propagation codes to model low velocity, small missile impact
in laminated architectural glass such as that which occurs in severe windstorms.
Specifically, a method is developed to model typical fractures that occur when laminated
glass is impacted by windborne debris. Computational results of concern to architectural

glazing designers are presented.

1. Introduction

In this paper we propose a method of modelling frac-
ture due to low velocity, small missile impact of
laminated glass windows typically found in large,
high-rise buildings. Laminated architectural glazing,
as in the familiar automative “safety glass”, is con-
structed by placing an adhesive polymeric interlayer
between two soda-lime glass plies. Polyvinyl butyral
(PVB)is the industry standard interlayer because of its
adhesive and optical qualities. The purpose of the
interlayer is to prevent the glass plies from shattering
on impact, thereby greatly reducing the possibility of
injury caused by sharp pieces of flying glass. In auto-
motive windshield applications, the interlayer also
prevents serious passenger injury in a collision by
minimizing the possibility of the head penetrating the
windshield, and doing so without fracturing the skull.
Penetration is prevented by absorbing the impact en-
ergy through stretching the PVB interlayer and skull
fracture is prevented by reducing the thickness of the
glass plies [1]. As will be seen later, the design objec-
tives of architectural glazing are different from auto-
motive glazing in spite of similar construction.

In architectural applications, we are usually con-
cerned with windborne debris such as roof gravel
which can be hurled with sufficient velocity to break
windows. Beason and co-workers [2] did a study of
damage to window glass in Houston, Texas caused by
hurricane Alicia which struck Houston in 1983. In
that study, significant window damage was reported
for a localized area of downtown Houston. The pri-
mary cause of window damage was windborne roof
gravel. Because Alicia was a relatively mild hurricane,
the need for improved impact resistance was apparent
in order to be better prepared for the possibility of
even stronger hurricanes that may strike.
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In their work, Beason and co-workers [2] reported
that the outside ply of a laminated unit can serve as an
impact shield. Their design methodology allows the
outside ply to fracture, but not the inside ply. If the
inside ply also fractures, window strength is signifi-
cantly reduced to the point where wind and/or heating,
ventilating and air conditioning loads can cause rapid
collapse of the window. This would expose the building
interior to the outside weather, greatly increasing the
possibility of damage to the building contents, injury to
people, and disruption of normal business activity. An
impact resistant design that fractures only at the outer
ply preserves building envelope integrity and can be
replaced at the convenience of the building owner with
minimal disruption of occupant activities. It should be
noted that this sacrificial ply concept requires that the
inside ply itself be of sufficient strength to withstand
design wind loading. It is apparent that the design
objectives of architectural and automotive glazing are
quite different: architectural glazing requires that the
inside ply remain intact when subject to low velocity,
small missile impact while automotive applications re-
quire that both plies fracture when subjected to impact
by a vehicle occupant.

The main objective of this work is to present
a method whereby traditional finite element wave
codes can be used to model low velocity, small missile
impact in laminated architectural glass when fracture
must be included in the analysis. In addition, results
showing the effect of fracture on critical stresses in the
laminate are presented.

2. Formulation of the impact problem
Fig. 1 shows the idealized impact problem under con-
sideration. A typical three-layer glazing system is
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Figure 1 Sketch of the problem studied: glass/PVB/glass laminate
subjected to impact by a spherical ball.

considered: two soda-lime glass plies separated by
a PVB interlayer. The interlayer bond is assumed
perfect with no debonding or slipping between layers
during impact. The effect of interlayer delamination
will be considered in a future work. The system is
impacted by a hard missile modelled as a chromium
steel ball with initial impact velocity vy. A worst-case
scenario to simulate windborne roof gravel during
a hurricane is assumed: the normal impact of
a 7.94 mm diameter steel ball at 35.8 ms 1.

Cylindrical coordinates (r,0,z) with a Lagrangian
description of motion are used to formulate the prob-
lem. We assume a condition of torsionless axisym-
metry so that normal stresses are independent of the
angle 0 and the shear stress components t,, and
1., vanish. The impact problem is solved numerically
using a modified version of the large-scale explicit
finite element code DYNA2D [3]. The code was
modified to incorporate a cracking algorithm suitable
for the impact problem considered here.

The steel ball and inside glass ply are modelled as
linear elastic materials. The outside glass ply is
modelled as linear elastic with a cracking algorithm
detailed below. The PVB interlayer is viscoelastic and
is modelled as a so-called standard linear solid. Many
polymers follow this linear viscoelastic law very well
especially when strains are small [4] as in the case of
laminated glass subject to low velocity impact. Details
of the material models as well as determination of the
various material properties are presented in a previous
work [5].

3. Crack systems in glass under impact
loading

The main types of cracks that form during the impact
of a spherical projectile on a flat brittle surface are
cone, median, lateral and radial cracks [6]. Cook and
Pharr [ 7] provide an excellent description of the mor-
phology of each of these crack types. In general, cone
and median cracks form during the loading half of the
impact cycle while radial and lateral cracks form on
unloading. There are of course exceptions; for
example, Chaudhri and Walley [8] noted that radial
cracks sometimes form just prior to maximum load.
At any rate, radial and lateral cracks are generally
much shallower than cone and median cracks, are not
axisymmetric, and since they usually form after the
maximum load has been transmitted to the target (i.c.
after the projectile comes to rest and begins to re-
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bound), they have little effect on the maximum stress
transmitted through a laminated glass unit to the
critical inside ply. Radial and lateral cracks will not be
considered in this analysis.

The median crack is also not axisymmetric. It is
coin shaped and oriented perpendicular to the target
surface directly beneath the impact site. Many re-
searchers [6, 9, 10] believe that median cracks that
develop under spherical indenters are due to the
formation of a plastic zone of yielded target material
beneath the indenter. Although glass is usually con-
sidered a brittle material with little or no plastic strain
prior to fracture, Marsh [11, 12] showed that plastic
flow can occur in glass when the flow stress (von Mises
stress) is high enough. Marsh [12] reported that the
room temperature flow stress is loading rate depen-
dent and that for short-term, high rate loading, such as
found in impact situation, the flow stress in soda-lime
glass approaches 10 GPa. We can approximate the
maximum von Mises stress occurring during an im-
pact by invoking the so-called quasi-static approxima-
tion [13]. That is, stresses occurring during an impact
can be well approximated by stresses induced from an
equivalent quasi-static load as long as the radius of the
contact circle between the colliding bodies expands at
a rate below the speed of elastic wave propagation. As
shown in the appendix, this is the case for the low
velocity impact studied here. Knight, Swain and
Chaudhri [6] provide a relation for the maximum
equivalent static load, P,,,, occurring during an im-
pact

p <1zsn3E32 pguf;)lfs . "
48k

where E denotes Young’s modulus, p the mass density,

vo the projectile impact velocity and R the projectile

radius. Here and in what follows, the subscripts t and

p are used to denote the target and projectile, respec-

tively. The symbol k is used to denote

9
k = R[(l —Vv)+(1 - Vg)(Et/Ep)] )

where v is Poisson’s ratio. Using classical Hertz im-
pact theory [14], one can show that the target von
Mises stress, G, at maximum equivalent static load is

6 = po{(l + vt)[ﬁtanl<é> — 1:| + §<ﬁ>}
3)

The non-dimensional distance  is defined to be z/a
where z is the distance into the target from the impact
site, po is the maximum interface pressure given by

3Pmax

= 4
Po 27’[612 ( )

and «a is the maximum contact patch radius during
impact given by
3 4kP . R

@ = 3p )



Differentiating Equation 3 with respect to & and set-
ting this equal to zero yields an equation that can be
solved numerically to give the location of maximum
von Mises stress. This location can then be substituted
into Equation 3 to give the maximum von Mises stress
during an impact

Omax = 6|§:0.4643 = 0.6434p, (6)

which is valid for soda-lime glass (i.e. for v, = 0.25).
Finally, using Equations 1, 4 and 5 in Equation 6
yields

Omax = 03398k~ E5pliPvd/? )

where we note that 6, is independent of the projec-
tile radius. For a steel on glass impact (E; = 70 GPa,
E, =200 GPa, v, = 0.25, v, = 0.29, p, = 7800 kgm ~°)
at vy = 35.8 ms~ !, Equation 7 yields &,,,, = 5.3 GPa,
well below the flow stress given by Marsh [12] for
soda-lime glass at high loading rates. Thus, without
plastic flow, we do not expect median cracks to form
under the low velocity impact situation studied here.
Although the above applies only to the impact of
a sphere into an infinite half-space, we will show later
that the von Mises stress in a laminated glass unit of
finite thickness is less than that in an infinite half-
space. Because the von Mises stress is below that
required for plastic flow and since plastic flow is the
probable cause of median cracks, we conclude that
median cracks will not be of concern in the situation
studied here. It is also noted that this was the case
reported by Ball and McKenzie [15] who saw no
evidence of median cracks forming in glass plates
under the impact of a steel ball at the velocity con-
sidered here.

It is clear from the above that the crack type of
primary concern is the cone crack. The cone crack is
axisymmetric and originates at the impact surface just
outside the contact patch where tensile stresses are the
highest. Fig. 2a illustrates a typical cone crack and its
geometry. The reason that the cone crack is of primary
concern is illustrated in Fig. 2b. The axisymmetric
nature of the crack permits a plug to form that can be
driven against the PVB interlayer, enhancing de-
lamination. Whether this is harmful or beneficial will
be addressed in a future work on interlayer delamina-
tion. Of concern here is an accurate model of the cone
crack phenomenon and how it affects critical stresses.

4. The computational cone crack model

A propagating cone crack is modelled in a finite ele-
ment mesh as follows: at the appropriate time and
location, an element “cracks” by setting deviatoric
stresses and hydrostatic tension to zero. If, in sub-
sequent time steps, deviatoric stresses are computed to
be other than zero, they are reset to zero. Similarly, if
hydrostatic tension is computed, it is reset to zero.
Hydrostatic compression is unaffected in a cracked
element. Thus, a cracked element will not support
shear or tension but will support compression. A com-
bination of analysis and experimental results detailed
below is used to determine the appropriate time and
location for element cracking.

Zan .
= |
|

Figure 2 (a) Cone crack and geometry in an infinite half-space; (b)
penetrating cone crack in laminated glass unit.

(b) PVB interlayer

4.1. The crack path

In accordance with experimental observation for im-
pact cases, the cone crack is assumed to originate at
the element coinciding with the maximum contact
patch radius as given by Equation 5. The cone propa-
gates at an angle o from the surface (see Fig. 2a) where
a is a function of impact velocity, vy. In general, the
cone angle increases with increasing impact velocity.
The following relation between o and v, can be de-
duced from the experimental work of Knight and
colleagues [6] in which 1.0 and 0.8 mm diameter steel
balls impacted borosilicate glass. For v, less than
50ms~!

Vo

* = 290

(90 — o) + 0 t)

where oy, is the cone angle for static loading. In the
above, both o and o, are in degrees and vy isin ms ™ 1.
If we assume the above is also valid for our situation
(R =397mm, v, =358ms ') but note that for

soda-lime glass, o ~ 22° [17], we get oo = 30°.

4.2. Crack velocity

A common approach to describing the velocity
of a propagating crack, v,, is to assume v, =
[1 — (co/c)]vmax Where ¢ is the initial crack length, c is
the current crack length and v,,,, is the limiting crack
speed [18]. It is easy to show that for the situation
here where c is of the order of millimetres and ¢, of the
order of micrometres [19] that the assumption
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Ue = Umayx = constant is justified. Experimental obser-
vation [8, 18] provides v, = 1550 ms 1.

4.3. Crack initiation time

We now consider when it is appropriate to start cone
crack propagation. First we need to determine an
approximate relation between equivalent static load,
P, and time, t. In the spirit of Goldsmith [20] and
Greszczuk [21] we assume

Pt) = P, |:sin <’:—t>} 9)

where P, is given by Equation 1, t; is the duration of
impact and n is a constant to be determined. The
duration of impact for an elastic collision of a sphere
on a flat surface is given by [22]

o 4/nR T(2/5) (400m2k2p2\!/5 (10)
L5 T(9/10)\ 81poE2

where I' denotes the gamma function. The exponent
n in Equation 9 is determined by requiring that the
linear impulse exerted on the projectile from the in-
stant of contact to the instant that the projectile comes
to rest (t;/2) be equal to the linear momentum of the
projectile at the instant of contact. That is

Jt‘/zp(t)dt — o, (11)

(0]

where m is the projectile mass. Using Equations 9 and
10, the integral in Equation 11 can be evaluated and
simplified further using Equation 1 to yield

2] - 2

I'(2/5)

which can be solved numerically to give n = 1.60. In
comparing the present result with that of Goldman
[20] and Greszczuk [21] we note that of the three, the
present result is the only one that satisfies the three
theoretical requirements of maximum load, impact
time and linear impulse.

Before the cone crack propagates downward,
a shallow ring crack must completely encircle the
contact patch [23]. The critical load to initiate a ring
crack is given by one of two relations [24]

3/27,2 p2
v>“k“R
P, = —————5 .01 1
. XV)ETaR co <€0.01a, (13a)
P, = AR ¢(,20.01q, (13b)

The first equation applies to the case where initial
pre-existing flaws, ¢y, are very small in relation to a.,
the contact radius corresponding to P.. Here
v(=3.9 Jm~?) is the fracture surface energy [24] and
X(v) = {(3/9[3(1 — v¥)(1 — 2v)*/32n]*} "% The sec-
ond equation is the so-called Auerbach law. This law
represents the minimum value of P, and applies when
preexisting flaws are large in comparison to the first
case. Here A(=109000 Nm 1) is the Auerbach con-
stant [25]. Note that for the Auerbach law, the crack
initiation load is independent of flaw size. To deter-
mine which equation applies requires knowledge of
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the flaw distribution in the glass. We assume initially
that the Auerbach law holds giving P, = 433 N for our
case. Then, from Equation 5 with P, = P. we get
a. = 0.3 mm. For the Auerbach law to apply we must
have sufficient flaws present that are 3 um or larger.
From Santhanam and Shaw [19], we see that this is
the case for “as delivered” soda-lime glass rods. We
therefore accept that the Auerbach law holds in this
case. Actually, for this case, it can be shown that for
flaws down to about 1 um, there is no difference be-
tween the crack initiation load predicted by the two
equations (keeping in mind that the Auerbach load
represents the minimum value of P,). From Equation
9, the time corresponding to P, = 433 N is 0.6 ps; how-
ever, recalling that the cone crack will not propagate
downwards until the ring crack has completely en-
circled the contact patch, cone cracking will certainly
start later than 0.6 us. During a rapidly increasing
load, such as in impact, it is probable that ring cracks
will spontaneously develop at numerous sites, mean-
ing that the time required to encircle the contact patch
will be short. For example, at 1.5 ps, Equation 9 pre-
dicts an equivalent load of about 3000 N which by
Equation 13a is strong enough to initiate ring cracks
at flaw sizes below the practical limit observed in
soda-lime glass. Thus, we can say with confidence that
the cone crack begins to propagate sometime between
0.6 us and 1.5 ps after impact. This would be consis-
tent with the experimental results of Chaudhri and
Liangyi [26] in which high speed photographs of
a tungsten carbide sphere impacting soda-lime glass
show the cone crack initiating after the predicted time
of initial ring crack formation but still early in the
impact cycle. To determine the effect of the uncertain-
ty in cone crack initiation time, two cases were com-
puted: one at an initiation time of 0.6 us, another at
1.5 ps. The difference between the two computed solu-
tions, for stresses of concern, was negligible. Cone
crack initiation times of both 0.6 us and 1.5 ps were
used in the computations that follow.

4.4. Crack depth

The final step is to determine how far the cone crack
will propagate. Wiederhorn and Lawn [27] show that
for the impact of a sphere on a glass block, the ge-
ometry of a cone crack (Fig. 2a) is proportional to R*/?
when the same materials and velocity are involved.
Therefore, by scaling the experimental data of Ball
and McKenzie [15] in which a 5.0 mm diameter steel
ball impacted glass plates, it can be shown that for the
worst case scenario considered here (2R = 7.94 mm,
vy = 35.8 ms~!) that a cone crack can be expected to
completely penetrate an 18 mm thick glass plate. Typ-
ical architectural glazing uses plies around 5 mm
thick; therefore, since 18 mm exceeds the practical ply
thickness of architectural glazing, here we will assume
that the cone crack completely penetrates the outside

glass ply.

5. Finite element computations
We consider the geometry of a typical architec-
tural glazing unit: hy = 4.76 mm, hpyg = 1.59 mm,
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Figure 3 Finite element mesh for the problem studied.

h; = 6.35 mm (see Fig. 1). Fig. 3 shows the finite ele-
ment mesh which, because of the problem axisym-
metry, represents only half of the actual geometry. The
bold lines in the figure are used to show the three
layers of the laminate. The mesh shown (17 554 nodes)
represents the hardware limitation of the machine
used in the computations. With regard to numerical
convergence, mesh refinement studies without crack-
ing showed a coarser mesh (4643 nodes) to be satisfac-
tory; however, to simulate an actual cracking process,
elements need to be kept as small as possible to min-
imize the strain energy released in cracked elements.
There is certainly a violation of the Griffith energy
balance requirement here, but small elements will
mitigate this effect. In the figure, boundaries c—d and
b—e are unconstrained. Boundary d—e is a so-called
non-reflecting boundary that is achieved by producing
an impedance matching function that cancels incom-
ing stress waves so that none are reflected back from
the boundary. Non-reflecting boundaries are used to
simulate infinite bodies; in this case, an infinite lami-
nate of finite thickness.

We are concerned mainly with stresses at the surfa-
ces of the glass plies since this is where cracks tend to
open and extend under tensile loading [6, 8, 23, 28].
Furthermore, using the design methodology of
Beason et al. [2], we restrict our concern to surface
stresses in the inside glass ply since this is the ply that
must not fracture. As shown in a previous work [5],
the r, 8 and z directions are principal directions for
normal impact and furthermore, the radial and hoop
stresses are equal and much larger than the axial
stress. Therefore, the maximum principal tensile stress
is of primary concern since it corresponds to a mode I,
crack opening stress for a surface crack located nor-
mal to the surface. Following each impact simulation,
a search of the maximum tensile principal stress in all
elements of the inside ply was done. In each case, the
maximum principal tensile stress occurred at element
1 of the mesh located at the innermost surface along
the line of symmetry (point ¢ in Fig. 3). Therefore, we

are interested in what effect the cone crack has on
element 1 maximum tensile principal stresses.

In all computations in this study, the glass plies are
considered to be initially free of residual stresses due
to thermal treatment; that is, we are considering an-
nealed glass only. Thermally treated glass will be con-
sidered in future studies.

6. Results

Fig. 4 shows the cracked elements in relation to the
problem geometry. The elements began cracking at
the contact path radius at 1.5 us and propagated
downward at 1550 ms !, reaching the final configura-
tion shown at about 6.1 ps after crack initiation.

Fig. 5 shows the von Mises stresses along the impact
load line. Each point on the graph represents the
maximum value occurring during an impact cycle. We
see that the effect of a cone crack in a laminated glass
unit is a lower von Mises stress than that observed
when no cracking occurs. Also shown is the case of
a theoretical impact of a steel sphere into a glass
elastic half-space. Recall we showed that for the steel
on glass impact case studied here (v, = 35.8 ms™~ 1,
2R = 7.94 mm), the von Mises stresses in an elastic
half-space were not high enough to produce plastic
flow leading to median cracks. Here, we see that the
stresses in a laminated glass unit are less than those in
a glass half-space with the stresses even less when
a cone crack is introduced. This figure supports the
assumption that median cracks do not form in the
impact case considered here.

Fig. 6 shows the distribution of maximum principal
tensile stress (normalized with respect to the max-
imum no cracking value) for stations along the inside
ply. As discussed earlier, the stress is maximum at the
location directly below the impact site. The partial
cone cracking case shown is one in which the cone
crack was allowed to penetrate only 92% of the thick-
ness of the outside ply. We see that the effect of a cone
crack is an approximate 28% increase in the critical
mode I stress. Fig. 7 is a time history plot of the critical
mode I stress for the cone cracking and no cracking
cases. Here, the figure is normalized with respect to the
maximum no cracking value. We note that the stress
pulse is about 20 ps in duration. This figure will prove
useful in future works when it will be necessary to
consider the amplitude and duration of the pulse in
order to predict when a given pulse will open and
extend a pre-existing flaw.

One clear consequence of the cone crack formation,
evident from Fig. 2b, is the certainty of high stress
concentrations at the interface between the cone crack
and PVB interlayer. These stresses will play a key role
in delaminating the PVB interlayer which will affect
the critical inside ply mode I stress. The effect of
delamination on critical mode I stress will be studied
in a future work; here we simply note that the cone
crack provides large stress concentrations that
may promote delamination. Figs 8 and 9 are plots of
the maximum axial and shear stress occurring along
the interface between the outside glass ply and the
PVB interlayer, respectively. The distance along the
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Figure 4 Illustration of cracked elements following impact.
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Figure 5 von Mises stresses in the outside ply along the impact load
line.
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Figure 6 Normalized maximum principal stress along the inside
surface of the laminate.

interface, r, is normalized with respect to the overall
laminate thickness, H. The axial stress is normalized
with respect to the no cracking case at r = 0, while the
shear stress is normalized with respect to the max-
imum value for the no cracking case. From both
figures, we note the high stress levels where the cone
crack meets the PVB interlayer and also note the
dramatic mitigation of the stress concentration for the
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Figure 8 Normalized maximum axial stress along the outside
ply/PVB interface.
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Figure 9 Normalized maximum shear stress along the outside
ply/PVB interface.

partial cone cracking case (crack penetrates 92% of
the outside ply thickness).

We now consider the effect of a cone crack when
there is a mechanism for providing the transfer of force
between the plug formed by the cone crack and the
remainder of the glass ply. Such a mechanism might be
provided by a second phase of tough whiskers, par-
ticles of fibres that could bridge the cone crack in
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Figure 10 Cracked element pattern. (a) No mechanical interlocking;
(b) with mechanical interlocking.
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Figure 11 Normalized maximum principal stress as a function of
time for the critical element with mechanical interlocking across the
cone crack face.

much the same way that crack bridging occurs in
successful reinforced brittle matrix composites
(clearly, this would provide a substantial challenge to
the materials designer in order that optical qualities
are not sacrificed). The modelling of a force transfer
mechanism is achieved in a qualitative fashion by
modifying the cracking algorithm employed earlier.
Fig. 10a is a schematic of the cracked mesh used
previously, an “x” denoting a cracked element. Recall-
ing the definition of a cracked element, it is evident
from the schematic that tensile force cannot be trans-
ferred across the crack. Fig. 10b is a schematic of
a mesh in which tensile force transfer between certain
elements is allowed. Cracked elements are those
marked with an “x”. For this mesh, forces can interact
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Figure 12 Normalized maximum axial stress along the outside
ply/PVB interface with mechanical interlocking across the cone
crack face.
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Figure 13 Normalized maximum shear stress along the outside
ply/PVB interface with mechanical interlocking across the cone
crack face.

through the nodes between elements marked with an
“o0”. Figs 11, 12 and 13 show the effect of mechan-
ical interlocking on the mode I stress and the
interface axial and shear stresses, respectively. We
note the significant reduction (c.f. Figs 7, 8, 9) of
all critical stresses when mechanical interlocking is
provided.

7. Conclusions

This work proposes an effective method in which
traditional finite element wave codes can be used to
analyse low velocity, small missile impact damage in
laminated architectural glazing. The work provides
much of the analytical and computation framework
for the future development of a computational model
that can be used to predict inside ply fracture in
architectural glazing systems due to windborne debris
impact.

It was shown that the primary crack type of concern
to the laminated architectural glass designer with re-
gard to impact resistance is the Hertz cone crack. The
cone crack was shown to completely penetrate the
outside ply of a three-layer system for practical
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applications when subjected to the worst-case scen-
ario occurring in severe windstorms.

Arresting the cone crack before complete penetra-
tion was shown to result in a reduction in all critical
stress measures; however, it remains to be seen in
future works what effect interlayer delamination plies
in the critical mode I stress in the inside ply. In
addition, the qualitative effect of mechanical inter-
locking between the regions separated by the cone
crack was shown to be a significant reduction in
critical stresses.

Appendix: Rate of contact circle

expansion during impact

The assumption that stresses due to an elastic impact
are well approximated by the stresses caused by an
equivalent quasi-static load is valid as long as the
contact circle between the projectile and target ex-
pands at a rate less than the velocity of elastic waves in
the target [13]. To determine the rate at which the
contact radius expands during impact, we rewrite
Equation 5 so that the contact radius is a function of

time
) <4kP(t)R>”3

3B (A1)

Substituting Equation 9 into Equation (A1) and differ-
entiating with respect to time gives the rate of contact
radius expansion

. nn (4kRPL N\ . (mt\ |5 nt
a(t)—3[i<3Et> [sm <t,>} cos(ti> (A2)

where P,,,, is given by Equation 1, t; by Equation 10
and n = 1.6. Equation (A2) is plotted in Fig. A1 for the
case of a steel-on-glass impact (E, = 70 GPa, E, =
200 GPa, v, = 0.25, v, = 0.29, p, = 7800 kgm ~*) and
vo =358ms™ !, R =397 mm. Note that except for
singularities at the moments of impact and leaving,
a is well below the velocity of stress wave propagation
in glass (~5800ms~! for dilatational waves,
3100 ms~! for Rayleigh surface waves) and therefore
the stresses due to an elastic impact are well approx-
imated by the stresses due to an equivalent quasi-
static load.

1500
1000

500

a(ms™")
o

5 10
-500 Time (HS)

-1000 [

-1500 -

Figure A1 Expansion rate of contact patch radius.
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